Book Image

Mastering Apache Spark 2.x - Second Edition

Book Image

Mastering Apache Spark 2.x - Second Edition

Overview of this book

Apache Spark is an in-memory, cluster-based Big Data processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and more. This book will take your knowledge of Apache Spark to the next level by teaching you how to expand Spark’s functionality and build your data flows and machine/deep learning programs on top of the platform. The book starts with a quick overview of the Apache Spark ecosystem, and introduces you to the new features and capabilities in Apache Spark 2.x. You will then work with the different modules in Apache Spark such as interactive querying with Spark SQL, using DataFrames and DataSets effectively, streaming analytics with Spark Streaming, and performing machine learning and deep learning on Spark using MLlib and external tools such as H20 and Deeplearning4j. The book also contains chapters on efficient graph processing, memory management and using Apache Spark on the cloud. By the end of this book, you will have all the necessary information to master Apache Spark, and use it efficiently for Big Data processing and analytics.
Table of Contents (21 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
10
Deep Learning on Apache Spark with DeepLearning4j and H2O

What's new in Apache Spark V2?


Since Apache Spark V2, many things have changed. This doesn't mean that the API has been broken. In contrast, most of the V1.6 Apache Spark applications will run on Apache Spark V2 with or without very little changes, but under the hood, there have been a lot of changes.

The first and most interesting thing to mention is the newest functionalities of the Catalyst Optimizer, which we will cover in detail in Chapter 3, The Catalyst Optimizer. Catalyst creates a Logical Execution Plan (LEP) from a SQL query and optimizes this LEP to create multiple Physical Execution Plans (PEPs). Based on statistics, Catalyst chooses the best PEP to execute. This is very similar to cost-based optimizers in Relational Data Base Management Systems (RDBMs). Catalyst makes heavy use of Project Tungsten, a component that we will cover in Chapter 4, Apache Spark Streaming.

Although the Java Virtual Machine (JVM) is a masterpiece on its own, it is a general-purpose byte code execution engine. Therefore, there is a lot of JVM object management and garbage collection (GC) overhead. So, for example, to store a 4-byte string, 48 bytes on the JVM are needed. The GC optimizes on object lifetime estimation, but Apache Spark often knows this better than JVM. Therefore, Tungsten disables the JVM GC for a subset of privately managed data structures to make them L1/L2/L3 Cache-friendly.

In addition, code generation removed the boxing of primitive types polymorphic function dispatching. Finally, a new first-class citizen called Dataset unified the RDD and DataFrame APIs. Datasets are statically typed and avoid runtime type errors. Therefore, Datasets can be used only with Java and Scala. This means that Python and R users still have to stick to DataFrames, which are kept in Apache Spark V2 for backward compatibility reasons.