Book Image

Scientific Computing with Python 3

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python 3

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python can be used for more than just general-purpose programming. It is a free, open source language and environment that has tremendous potential for use within the domain of scientific computing. This book presents Python in tight connection with mathematical applications and demonstrates how to use various concepts in Python for computing purposes, including examples with the latest version of Python 3. Python is an effective tool to use when coupling scientific computing and mathematics and this book will teach you how to use it for linear algebra, arrays, plotting, iterating, functions, polynomials, and much more.
Table of Contents (23 chapters)
Scientific Computing with Python 3
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Acknowledgement
Preface
References

Function documentation


You should document your functions using a string at the beginning. This is called docstring:

def newton(f, x0):
    """
    Newton's method for computing a zero of a function
    on input:
    f  (function) given function f(x)
    x0 (float) initial guess 
    on return:
    y  (float) the approximated zero of f
    """
     ...

When calling help(newton), you get this docstring displayed together with the call of this function:

Help on function newton in module __main__:

newton(f, x0)
     Newton's method for computing a zero of a function
     on input:
     f  (function) given function f(x)
     x0 (float) initial guess
     on return:
     y  (float) the approximated zero of f

The docstring is internally saved as an attribute, __doc__, of the given function. In the example, it's newton.__doc__. The minimal information you should provide in a docstring is the purpose of the function...