Book Image

Artificial Intelligence with Python

Book Image

Artificial Intelligence with Python

Overview of this book

Artificial Intelligence is becoming increasingly relevant in the modern world. By harnessing the power of algorithms, you can create apps which intelligently interact with the world around you, building intelligent recommender systems, automatic speech recognition systems and more. Starting with AI basics you'll move on to learn how to develop building blocks using data mining techniques. Discover how to make informed decisions about which algorithms to use, and how to apply them to real-world scenarios. This practical book covers a range of topics including predictive analytics and deep learning.
Table of Contents (23 chapters)
Artificial Intelligence with Python
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Branches of AI


It is important to understand the various fields of study within AI so that we can choose the right framework to solve a given real-world problem. Here's a list of topics that are dominant:

  • Machine learning and pattern recognition: This is perhaps the most popular form of AI out there. We design and develop software that can learn from data. Based on these learning models, we perform predictions on unknown data. One of the main constraints here is that these programs are limited to the power of the data. If the dataset is small, then the learning models would be limited as well. Let's see what a typical machine learning system looks like:

When a system makes an observation, it is trained to compare it with what it has already seen in the form of a pattern. For example, in a face recognition system, the software will try to match the pattern of eyes, nose, lips, eyebrows, and so on in order to find a face in the existing database of users.

  • Logic-based AI: Mathematical logic is used to execute computer programs in logic-based AI. A program written in logic-based AI is basically a set of statements in logical form that express facts and rules about a particular problem domain. This is used extensively in pattern matching, language parsing, semantic analysis, and so on.

  • Search: The Search techniques are used extensively in AI programs. These programs examine a large number of possibilities and then pick the most optimal path. For example, this is used a lot in strategy games such as Chess, networking, resource allocation, scheduling, and so on.

  • Knowledge representation: The facts about the world around us need to be represented in some way for a system to make sense of them. The languages of mathematical logic are frequently used here. If knowledge is represented efficiently, systems can be smarter and more intelligent. Ontology is a closely related field of study that deals with the kinds of objects that exist. It is a formal definition of the properties and relationships of the entities that exist in a particular domain. This is usually done with a particular taxonomy or a hierarchical structure of some kind. The following diagram shows the difference between information and knowledge:

  • Planning: This field deals with optimal planning that gives us maximum returns with minimal costs. These software programs start with facts about the particular situation and a statement of a goal. These programs are also aware of the facts of the world, so that they know what the rules are. From this information, they generate the most optimal plan to achieve the goal.

  • Heuristics: A heuristic is a technique used to solve a given problem that's practical and useful in solving the problem in the short term, but not guaranteed to be optimal. This is more like an educated guess on what approach we should take to solve a problem. In AI, we frequently encounter situations where we cannot check every single possibility to pick the best option. So we need to use heuristics to achieve the goal. They are used extensively in AI in fields such as robotics, search engines, and so on.

  • Genetic programming: Genetic programming is a way to get programs to solve a task, by mating programs and selecting the fittest. The programs are encoded as a set of genes, using an algorithm to get a program that is able to perform the given task really well.