Book Image

Deep Learning with TensorFlow

By : Giancarlo Zaccone, Md. Rezaul Karim, Ahmed Menshawy
Book Image

Deep Learning with TensorFlow

By: Giancarlo Zaccone, Md. Rezaul Karim, Ahmed Menshawy

Overview of this book

Deep learning is the step that comes after machine learning, and has more advanced implementations. Machine learning is not just for academics anymore, but is becoming a mainstream practice through wide adoption, and deep learning has taken the front seat. As a data scientist, if you want to explore data abstraction layers, this book will be your guide. This book shows how this can be exploited in the real world with complex raw data using TensorFlow 1.x. Throughout the book, you’ll learn how to implement deep learning algorithms for machine learning systems and integrate them into your product offerings, including search, image recognition, and language processing. Additionally, you’ll learn how to analyze and improve the performance of deep learning models. This can be done by comparing algorithms against benchmarks, along with machine intelligence, to learn from the information and determine ideal behaviors within a specific context. After finishing the book, you will be familiar with machine learning techniques, in particular the use of TensorFlow for deep learning, and will be ready to apply your knowledge to research or commercial projects.
Table of Contents (11 chapters)

Recurrent Neural Networks

Deep learning architectures that are used widely nowadays are the so-called Recurrent Neural Networks (RNNs). The basic idea of RNNs is to make use of sequential type information in the input.

These networks are recurrent because they perform the same computations for all the elements of a sequence of inputs, and the output of each element depends, in addition to the current input, from all the previous computations.

RNNs have proved to have excellent performance in problems such as predicting the next character in a text or, similarly, the prediction of the next word sequence in a sentence.

However, they are also used for more complex problems, such as Machine Translation (MT). In this case, the network has as input a sequence of words in a source language, while the output will be the translated input sequence in a target language, finally, other applications of great importance in which...