Book Image

R Data Analysis Cookbook - Second Edition

By : Kuntal Ganguly, Shanthi Viswanathan, Viswa Viswanathan
Book Image

R Data Analysis Cookbook - Second Edition

By: Kuntal Ganguly, Shanthi Viswanathan, Viswa Viswanathan

Overview of this book

Data analytics with R has emerged as a very important focus for organizations of all kinds. R enables even those with only an intuitive grasp of the underlying concepts, without a deep mathematical background, to unleash powerful and detailed examinations of their data. This book will show you how you can put your data analysis skills in R to practical use, with recipes catering to the basic as well as advanced data analysis tasks. Right from acquiring your data and preparing it for analysis to the more complex data analysis techniques, the book will show you how you can implement each technique in the best possible manner. You will also visualize your data using the popular R packages like ggplot2 and gain hidden insights from it. Starting with implementing the basic data analysis concepts like handling your data to creating basic plots, you will master the more advanced data analysis techniques like performing cluster analysis, and generating effective analysis reports and visualizations. Throughout the book, you will get to know the common problems and obstacles you might encounter while implementing each of the data analysis techniques in R, with ways to overcoming them in the easiest possible way. By the end of this book, you will have all the knowledge you need to become an expert in data analysis with R, and put your skills to test in real-world scenarios.
Table of Contents (14 chapters)

Introduction

Data analysts often come across large datasets of unlabeled information with high dimensions/features and often seek to reduce the complexity of the data by applying Clustering or PCA.
Clustering is a data analysis technique used to discover groups of similar objects (close in terms of distance) or patterns in a dataset. Unlike supervised learning techniques (such as classification and regression), a clustering analysis does not use any labeled data, instead it uses the similarity between data features to group them into clusters. There are two standard clustering strategies: partitioning methods and hierarchical clustering.

PCA is a dimensionality reduction technique that transforms m-dimensional input space to n-dimensional (n < m) output space, with the objective to minimize the amount of information/variance lost by discarding (m - n) dimension.

This chapter...