Book Image

PostgreSQL High Availability Cookbook - Second Edition

By : Shaun Thomas
Book Image

PostgreSQL High Availability Cookbook - Second Edition

By: Shaun Thomas

Overview of this book

Databases are nothing without the data they store. In the event of a failure - catastrophic or otherwise - immediate recovery is essential. By carefully combining multiple servers, it’s even possible to hide the fact a failure occurred at all. From hardware selection to software stacks and horizontal scalability, this book will help you build a versatile PostgreSQL cluster that will survive crashes, resist data corruption, and grow smoothly with customer demand. It all begins with hardware selection for the skeleton of an efficient PostgreSQL database cluster. Then it’s on to preventing downtime as well as troubleshooting some real life problems that administrators commonly face. Next, we add database monitoring to the stack, using collectd, Nagios, and Graphite. And no stack is complete without replication using multiple internal and external tools, including the newly released pglogical extension. Pacemaker or Raft consensus tools are the final piece to grant the cluster the ability to heal itself. We even round off by tackling the complex problem of data scalability. This book exploits many new features introduced in PostgreSQL 9.6 to make the database more efficient and adaptive, and most importantly, keep it running.
Table of Contents (18 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.Packtpub.com
Customer Feedback
Preface

Introduction


What does high availability mean? In the context of what we're trying to build, it means we want our database to start and remain online for as long as possible. A critical component of this is the hardware that hosts the database itself. No matter how perfect a machine and its parts may be, failure or unexpected behavior of any element can result in an outage.

So how do we avoid these unwanted outages? Expect them. We must start by assuming hardware can and will fail, and at the worst possible moment. If we start with that in mind, it becomes much easier to make decisions regarding the composition of each server we are building.

Make no mistake! Much of this planning will rely on worksheets, caveats, and compromise. Some of our choices will have several expensive options, and we will have to weigh the benefits offered against our total cost outlay. We want to build something stable, which is not always easy. Depending on the size of our company, our purchasing power, and available hosting choices, we may be in for a rather complicated path to that goal.

This chapter will attempt to paint a complete picture of a highly-available environment in such a way that you can pick and choose the best solution without making too many detrimental compromises. Of course, we'll offer advice to what we believe is the best overall solution, but you don't always have to take our word for it.

Note

For the purposes of this chapter, we will not cover cloud computing or other elastic allocation options. Many of the concepts we introduce can be adapted to those solutions, yet many are implementation-specific. If you want to use a cloud vendor such as Amazon or Rackspace, you will need to obtain manuals and appropriate materials for applying what you learn here.