Book Image

PostgreSQL High Availability Cookbook - Second Edition

By : Shaun Thomas
Book Image

PostgreSQL High Availability Cookbook - Second Edition

By: Shaun Thomas

Overview of this book

Databases are nothing without the data they store. In the event of a failure - catastrophic or otherwise - immediate recovery is essential. By carefully combining multiple servers, it’s even possible to hide the fact a failure occurred at all. From hardware selection to software stacks and horizontal scalability, this book will help you build a versatile PostgreSQL cluster that will survive crashes, resist data corruption, and grow smoothly with customer demand. It all begins with hardware selection for the skeleton of an efficient PostgreSQL database cluster. Then it’s on to preventing downtime as well as troubleshooting some real life problems that administrators commonly face. Next, we add database monitoring to the stack, using collectd, Nagios, and Graphite. And no stack is complete without replication using multiple internal and external tools, including the newly released pglogical extension. Pacemaker or Raft consensus tools are the final piece to grant the cluster the ability to heal itself. We even round off by tackling the complex problem of data scalability. This book exploits many new features introduced in PostgreSQL 9.6 to make the database more efficient and adaptive, and most importantly, keep it running.
Table of Contents (18 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.Packtpub.com
Customer Feedback
Preface

Securing the WAL stream


The primary mechanism that PostgreSQL uses to provide a data durability guarantee is through its Write Ahead Log (WAL). All transactional data is written to this location before ever being committed to database files. Once WAL files are no longer necessary for crash recovery, PostgreSQL will either delete or archive them. For the purposes of a highly available server, we recommend that you keep these important files as long as possible. There are several reasons for this; they are as follows:

  • Archived WAL files can be used for Point In Time Recovery (PITR)
  • If you are using streaming replication, interrupted streams can be re-established by applying WAL files until the replica has caught up
  • WAL files can be reused to service multiple server copies

In order to gain these benefits, we need to enable PostgreSQL WAL archiving and save these files until we no longer need them. This section will address our recommendations for long-term storage of WAL files.

Getting ready

In order...