Book Image

Python for Finance - Second Edition

By : Yuxing Yan
5 (1)
Book Image

Python for Finance - Second Edition

5 (1)
By: Yuxing Yan

Overview of this book

This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it. This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance. The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures. This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM’s market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option.
Table of Contents (23 chapters)
Python for Finance Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Understanding the interpolation technique


Interpolation is a technique used quite frequently in finance. In the following example, we have to replace two missing values, NaN, between 2 and 6. The pandas.interpolate() function, for a linear interpolation, is used to fill in the two missing values:

import pandas as pd 
import numpy as np 
nn=np.nan
x=pd.Series([1,2,nn,nn,6]) 
print(x.interpolate())

The output is shown here:

0    1.000000
1    2.000000
2    3.333333
3    4.666667
4    6.000000
dtype: float64

The preceding method is a linear interpolation. Actually, we could estimate a Δ and calculate those missing values manually:

Here, v2(v1) is the second (first) value and n is the number of intervals between those two values. For the preceding case, Δ is (6-2)/3=1.33333. Thus, the next value will be v1+Δ=2+1.33333=3.33333. This way, we could continually estimate all missing values. Note that if we have several periods with missing values, then the delta for each period has to be calculated manually...