Book Image

Hands-On Data Science and Python Machine Learning

By : Frank Kane
Book Image

Hands-On Data Science and Python Machine Learning

By: Frank Kane

Overview of this book

Join Frank Kane, who worked on Amazon and IMDb’s machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank’s successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis.
Table of Contents (11 chapters)

Bias/variance trade-off

One of the basic challenges that we face when dealing with real-world data is overfitting versus underfitting your regressions to that data, or your models, or your predictions. When we talk about underfitting and overfitting, we can often talk about that in the context of bias and variance, and the bias-variance trade-off. So, let's talk about what that means.

So conceptually, bias and variance are pretty simple. Bias is just how far off you are from the correct values, that is, how good are your predictions overall in predicting the right overall value. If you take the mean of all your predictions, are they more or less on the right spot? Or are your errors all consistently skewed in one direction or another? If so, then your predictions are biased in a certain direction.

Variance is just a measure of how spread out, how scattered your predictions...