Book Image

scikit-learn Cookbook - Second Edition

By : Trent Hauck
Book Image

scikit-learn Cookbook - Second Edition

By: Trent Hauck

Overview of this book

Python is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility, and within the Python data space, scikit-learn is the unequivocal choice for machine learning. This book includes walk throughs and solutions to the common as well as the not-so-common problems in machine learning, and how scikit-learn can be leveraged to perform various machine learning tasks effectively. The second edition begins with taking you through recipes on evaluating the statistical properties of data and generates synthetic data for machine learning modelling. As you progress through the chapters, you will comes across recipes that will teach you to implement techniques like data pre-processing, linear regression, logistic regression, K-NN, Naïve Bayes, classification, decision trees, Ensembles and much more. Furthermore, you’ll learn to optimize your models with multi-class classification, cross validation, model evaluation and dive deeper in to implementing deep learning with scikit-learn. Along with covering the enhanced features on model section, API and new features like classifiers, regressors and estimators the book also contains recipes on evaluating and fine-tuning the performance of your model. By the end of this book, you will have explored plethora of features offered by scikit-learn for Python to solve any machine learning problem you come across.
Table of Contents (13 chapters)

Writing a stacking aggregator with scikit-learn

In this section, we will write a stacking aggregator with scikit-learn. A stacking aggregator mixes models of potentially very different types. Many of the ensemble algorithms we have seen mix models of the same type, usually decision trees.

The fundamental process in the stacking aggregator is that we use the predictions of several machine learning algorithms as input for the training of another machine learning algorithm.

In more detail, we train two or more machine learning algorithms using a pair of X and y sets (X_1, y_1). Then we make predictions on a second X set (X_stack), y_pred_1, y_pred_2, and so on.

These predictions, y_pred_1 and y_pred_2, become inputs to a machine learning algorithm with the training output y_stack. Finally, the error can be measured on a third input set, X_3, and a ground truth set, y_3.

It will be...