Book Image

Statistics for Data Science

Book Image

Statistics for Data Science

Overview of this book

Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically.
Table of Contents (19 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Introducing statistical regression


As promised, let's get going in this chapter with a section that provides a clear explanation of what statistical regression is.

For starters, statistical regression is also routinely referred to as regression analysis and is a process for estimating the relationships among variables. This process encompasses numerous techniques for modeling and analyzing variables, focusing on the relationship between a dependent variable and one (or more) independent variables (or predictors).

So specifically, regression analysis is the work done to identify and understand how the (best representative) value of a dependent variable (a variable that depends on other factors) changes when any one of the independent variables (a variable that stands alone and isn't changed by the other variables) is changed while the other independent variables stay the same.

A simple example might be how the total dollars spent on marketing (an independent variable example) impacts the total...