Book Image

Deep Learning for Computer Vision

By : Rajalingappaa Shanmugamani
Book Image

Deep Learning for Computer Vision

By: Rajalingappaa Shanmugamani

Overview of this book

Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation.
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell
Foreword
Contributors
Preface

Algorithms for semantic segmentation


There are several deep learning-based algorithms that were proposed to solve image segmentation tasks. A sliding window approach can be applied at a pixel level for segmentation. A sliding window approach takes an image and breaks the image into smaller crops. Every crop of the image is classified for a label. This approach is expensive and inefficient because it doesn't reuse the shared features between the overlapping patches. In the following sections, we will discuss a few algorithms that can overcome this problem.

The Fully Convolutional Network

The Fully Convolutional Network (FCN) introduced the idea of an end-to-end convolutional network. Any standard CNN architecture can be used for FCN by removing the fully connected layers, and the implementation of the same was shown in Chapter 4, Object Detection. The fully connected layers are replaced by a convolution layer. The depth is higher in the final layers and the size is smaller. Hence, 1D convolution...