Book Image

Statistics for Machine Learning

By : Pratap Dangeti
Book Image

Statistics for Machine Learning

By: Pratap Dangeti

Overview of this book

Complex statistics in machine learning worry a lot of developers. Knowing statistics helps you build strong machine learning models that are optimized for a given problem statement. This book will teach you all it takes to perform the complex statistical computations that are required for machine learning. You will gain information on the statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. You will see real-world examples that discuss the statistical side of machine learning and familiarize yourself with it. You will come across programs for performing tasks such as modeling, parameter fitting, regression, classification, density collection, working with vectors, matrices, and more. By the end of the book, you will have mastered the statistics required for machine learning and will be able to apply your new skills to any sort of industry problem.
Table of Contents (16 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Comparison of error components across various styles of models


Errors need to be evaluated in order to measure the effectiveness of the model in order to improve the model's performance further by tuning various knobs. Error components consist of a bias component, variance component, and pure white noise:

Out of the following three regions:

  • The first region has high bias and low variance error components. In this region, models are very robust in nature, such as linear regression or logistic regression.
  • Whereas the third region has high variance and low bias error components, in this region models are very wiggly and vary greatly in nature, similar to decision trees, but due to the great amount of variability in the nature of their shape, these models tend to overfit on training data and produce less accuracy on test data.
  • Last but not least, the middle region, also called the second region, is the ideal sweet spot, in which both bias and variance components are moderate, causing it to create...