Book Image

Statistics for Machine Learning

By : Pratap Dangeti
Book Image

Statistics for Machine Learning

By: Pratap Dangeti

Overview of this book

Complex statistics in machine learning worry a lot of developers. Knowing statistics helps you build strong machine learning models that are optimized for a given problem statement. This book will teach you all it takes to perform the complex statistical computations that are required for machine learning. You will gain information on the statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. You will see real-world examples that discuss the statistical side of machine learning and familiarize yourself with it. You will come across programs for performing tasks such as modeling, parameter fitting, regression, classification, density collection, working with vectors, matrices, and more. By the end of the book, you will have mastered the statistics required for machine learning and will be able to apply your new skills to any sort of industry problem.
Table of Contents (16 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Decision tree classifier


The DecisionTtreeClassifier from scikit-learn has been utilized for modeling purposes, which is available in the tree submodule:

# Decision Tree Classifier 
>>> from sklearn.tree import DecisionTreeClassifier

The parameters selected for the DT classifier are in the following code with splitting criterion as Gini, Maximum depth as 5, minimum number of observations required for qualifying split is 2, and the minimum samples that should be present in the terminal node is 1:

 >>> dt_fit = DecisionTreeClassifier(criterion="gini", max_depth=5,min_samples_split=2,  min_samples_leaf=1,random_state=42) 
>>> dt_fit.fit(x_train,y_train) 
 
>>> print ("\nDecision Tree - Train Confusion  Matrix\n\n", pd.crosstab(y_train, dt_fit.predict(x_train),rownames = ["Actuall"],colnames = ["Predicted"]))    
>>> from sklearn.metrics import accuracy_score, classification_report    
>>> print ("\nDecision Tree - Train accuracy\n\n",round...