Book Image

Mastering Machine Learning with scikit-learn - Second Edition

By : Gavin Hackeling
Book Image

Mastering Machine Learning with scikit-learn - Second Edition

By: Gavin Hackeling

Overview of this book

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.
Table of Contents (22 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
9
From Decision Trees to Random Forests and Other Ensemble Methods
Index

Chapter 6. From Linear Regression to Logistic Regression

In previous chapters, we discussed simple, multiple, and polynomial linear regression. The models are special cases of the generalized linear model, a flexible framework that requires fewer assumptions than ordinary linear regression. In this chapter, we will discuss some of these assumptions as they relate to another special case of the generalized linear model called logistic regression.

Unlike the regression models we have previously discussed, logistic regression is used for classification tasks. Recall that the goal in classification tasks is to induce a function that maps an observation to its associated class or label. A learning algorithm must use pairs of feature vectors and their corresponding labels to induce the values of the mapping function's parameters that produce the best classifier, as measured by some performance metric. In binary classification, the classifier must assign instances to one of two classes. In multi...