Book Image

Hands-On Machine Learning on Google Cloud Platform

By : Giuseppe Ciaburro, V Kishore Ayyadevara, Alexis Perrier
Book Image

Hands-On Machine Learning on Google Cloud Platform

By: Giuseppe Ciaburro, V Kishore Ayyadevara, Alexis Perrier

Overview of this book

Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems.
Table of Contents (18 chapters)
8
Creating ML Applications with Firebase

OpenAI Gym

OpenAI Gym is a library that helps us to implement algorithms based on reinforcement learning. It includes a growing collection of benchmark issues that expose a common interface, and a website where people can share their results and compare algorithm performance.

OpenAI Gym focuses on the episodic setting of reinforced learning. In other words, the agent's experience is divided into a series of episodes. The initial state of the agent is randomly sampled by a distribution, and the interaction proceeds until the environment reaches a terminal state. This procedure is repeated for each episode, with the aim of maximizing the total reward expectation per episode and achieving a high level of performance in the fewest possible episodes.

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports the ability to teach agents everything...