Book Image

R Deep Learning Projects

Book Image

R Deep Learning Projects

Overview of this book

R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R—including convolutional neural networks, recurrent neural networks, and LSTMs—and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages—such as MXNetR, H2O, deepnet, and more—to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting.
Table of Contents (11 chapters)

Summary


We have just finished our first mile in the R and deep learning journey! Through this chapter, we got more familiar with the important concepts of deep learning. We started with what deep learning is all about, why it is important and the recent success of applications, as well. After we were well equipped, we solved the handwritten digit using shallow neural networks, deep neural networks and CNNs in sequence, and proved that CNNs are the best suited to exploiting strong and unique features that differentiate images of different classes.

Inspired by the human visual cortex, CNNs classify images by first deriving rich representations such as edges, curves and shapes, which was demonstrated in the visualization of the outputs of convolutional layers. In addition, we verified the performance and generalization of the CNN model using early stopping as a technique to avoid overfitting. Overall, we not only covered the mechanics of CNNs, including the concepts of convolution and pooling, but also implemented a CNN model with MXNet, as one of the most popular deep learning packages in R.