Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Deep convolutional networks


In the previous chapter, Chapter 9Neural Networks for Machine Learning we have seen how a multi-layer perceptron can achieve a very high accuracy when working with an complex image dataset that is not very complex, such as the MNIST handwritten digits one. However, as the fully-connected layers are horizontal, the images, which in general are three-dimensional structures (width × height × channels), must be flattened and transformed into one-dimensional arrays where the geometric properties are definitively lost. With more complex datasets, where the distinction between classes depends on more details and on their relationships, this approach can yield moderate accuracies, but it can never reach the precision required by production-ready applications.

The conjunction of neuroscientific studies and image processing techniques suggested experimenting with neural networks where the first layers work with bidimensional structures (without the channels), trying to...