Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Summary


In this chapter, we discussed the main principles of adversarial training, and explained the roles of two players: the generator and discriminator. We described how to model and train them using a minimax approach whose double goal is to force the generator to learn the true data distribution pdata, and get the discriminator to distinguish perfectly between true samples (belonging to pdata) and unacceptable ones. In the same section, we analyzed the inner dynamics of a Generative Adversarial Network and some common problems that can slow down the training process and lead to a sub-optimal final configuration.

One of the most difficult problems experienced with standard GANs arises when the data generating process and the generator distribution have disjointed support. In this case, the Jensen-Shannon divergence becomes constant and doesn't provide precise information about the distance. An excellent alternative is provided by the Wasserstein measure, which is employed in a more efficient...