Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Summary


In this chapter, we introduced the most important RL concepts, focusing on the mathematical structure of an environment as a Markov Decision Process, and on the different kinds of policy and how they can be derived from the expected reward obtained by an agent. In particular, we defined the value of a state as the expected future reward considering a sequence discounted by a factor, γ. In the same way, we introduced the concept of the Q function, which is the value of an action when the agent is in a specific state.

These concepts directly employed the policy iteration algorithm, which is based on a Dynamic Programming approach assuming complete knowledge of the environment. The task is split into two stages; during the first one, the agent evaluates all the states given the current policy, while in the second one, the policy is updated in order to be greedy with respect to the new value function. In this way, the agent is forced to always pick the action that leads to a transition...