Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Transductive Support Vector Machines (TSVM)


Another approach to the same problem is offered by the TSVM, proposed by T. Joachims (in Transductive Inference for Text Classification using Support Vector Machines, Joachims T., ICML Vol. 99/1999). The idea is to keep the original objective with two sets of slack variables: the first for the labeled samples and the other for the unlabeled ones:

As this is a transductive approach, we need to consider the unlabeled samples as variable-labeled ones (subject to the learning process), imposing a constraint similar to the supervised points. As for the previous algorithm, we assume we have N labeled samples and M unlabeled ones; therefore, the conditions become as follows:

The first constraint is the classical SVM one and it works only on labeled samples. The second one uses the variable y(u)j with the corresponding slack variables ξj to impose a similar condition on the unlabeled samples, while the third one is necessary to constrain the labels to being...