Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Label spreading


The last algorithm (proposed by Zhou et al.) that we need to analyze is called label spreading, and it's based on the normalized graph Laplacian:

This matrix has each a diagonal element lii equal to 1, if the degree deg(lii) > 0 (0 otherwise) and all the other elements equal to:

The behavior of this matrix is analogous to a discrete Laplacian operator, whose real-value version is the fundamental element of all diffusion equations. To better understand this concept, let's consider the generic heat equation:

This equation describes the behavior of the temperature of a room when a point is suddenly heated. From basic physics concepts, we know that heat will spread until the temperature reaches an equilibrium point and the speed of variation is proportional to the Laplacian of the distribution. If we consider a bidimensional grid at the equilibrium (the derivative with respect to when time becomes null) and we discretize the Laplacian operator (2 = ∇ · ∇) considering the incremental...