Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Gradient boosting


At this point, we can introduce a more general method of creating boosted ensembles. Let's choose a generic algorithm family, represented as follows:

Each model is parametrized using the vector θi and there are no restrictions on the kind of method that is employed. In this case, we are going to consider decision trees (which is one of the most diffused algorithms when this boosting strategy is employed—in this case, the algorithm is known as gradient tree boosting), but the theory is generic and can be easily applied to more complex models, such as neural networks. In a decision tree, the parameter vector θi is made up of selection tuples, so the reader can think of this method as a pseudo-random forest where, instead of randomness, we look for extra optimality exploiting the previous experience. In fact, as with AdaBoost, a gradient boosting ensemble is built sequentially, using a technique that is formally defined as Forward Stage-wise Additive Modeling. The resulting...