Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

Ship it!

Let's assume we want to integrate this classifier into our site. In all of the preceding examples, we always trained on only 90% of the available data, because we used the other 10% for testing. Let's assume that the data was all we had. In that case, we should retrain the classifier on all data:

>>> C_best = 0.01 # determined above
>>> clf = LogisticRegression(C=C_best)
>>> clf.fit(X, Y) # now trainining an all data without cross-validation
>>> print(clf.coef_)
[[ 0.24937413 0.00777857 0.0097297 0.00061647 0.02354386 -0.03715787 -0.03406846]]

Finally, we should store the trained classifier, because we definitely do not want to retrain it each time we start the classification service. Instead, we can simply serialize the classifier after training and then deserialize on that site:

>>> import pickle
>>> pickle...