Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

Measuring the relatedness of posts

From a machine learning point of view, raw text is useless. If we manage to transform it into meaningful numbers, we can then feed it into our machine learning algorithms, such as clustering. This is also true for more mundane operations on text, such as similarity measurement.

How not to do it

One text similarity measure is the Levenshtein distance, which also goes by the name edit distance. Let's say we have two words, machine and mchiene. The similarity between them can be expressed as the minimum set of edits that are necessary to turn one word into the other. In this case, the edit distance will be two, as we have to add an a after the m and delete the first e. This algorithm is...