Book Image

Advanced Deep Learning with Keras

By : Rowel Atienza
Book Image

Advanced Deep Learning with Keras

By: Rowel Atienza

Overview of this book

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
Advanced Deep Learning with Keras
Contributors
Preface
Other Books You May Enjoy
Index

Wasserstein GAN


As we've mentioned before, GANs are notoriously hard to train. The opposing objectives of the two networks, the discriminator and the generator, can easily cause training instability. The discriminator attempts to correctly classify the fake data from the real data. Meanwhile, the generator tries its best to trick the discriminator. If the discriminator learns faster than the generator, the generator parameters will fail to optimize. On the other hand, if the discriminator learns more slowly, then the gradients may vanish before reaching the generator. In the worst case, if the discriminator is unable to converge, the generator is not going to be able to get any useful feedback.

Distance functions

The stability in training a GAN can be understood by examining its loss functions. To better understand the GAN loss functions, we're going to review the common distance or divergence functions between two probability distributions. Our concern is the distance between pdata for true...