Book Image

Hands-On Transfer Learning with Python

By : Dipanjan Sarkar, Nitin Panwar, Raghav Bali, Tamoghna Ghosh
Book Image

Hands-On Transfer Learning with Python

By: Dipanjan Sarkar, Nitin Panwar, Raghav Bali, Tamoghna Ghosh

Overview of this book

Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems.
Table of Contents (14 chapters)

What is deep learning?

In machine learning (ML), we try to automatically discover rules for mapping input data to a desired output. In this process, it's very important to create appropriate representations of data. For example, if we want to create an algorithm to classify an email as spam/ham, we need to represent the email data numerically. One simple representation could be a binary vector where each component depicts the presence or absence of a word from a predefined vocabulary of words. Also, these representations are task-dependent, that is, representations may vary according to the final task that we desire our ML algorithm to perform.

In the preceding email example, instead of identifying spam/ham if we want to detect sentiment in the email, a more useful representation of the data could be binary vectors where the predefined vocabulary consists of words with positive...