Book Image

Foundations of Blockchain

By : Koshik Raj
Book Image

Foundations of Blockchain

By: Koshik Raj

Overview of this book

Blockchain technology is a combination of three popular concepts: cryptography, peer-to-peer networking, and game theory. This book is for anyone who wants to dive into blockchain from first principles and learn how decentralized applications and cryptocurrencies really work. This book begins with an overview of blockchain technology, including key definitions, its purposes and characteristics, so you can assess the full potential of blockchain. All essential aspects of cryptography are then presented, as the backbone of blockchain. For readers who want to study the underlying algorithms of blockchain, you’ll see Python implementations throughout. You’ll then learn how blockchain architecture can create decentralized applications. You’ll see how blockchain achieves decentralization through peer-to-peer networking, and how a simple blockchain can be built in a P2P network. You’ll learn how these elements can implement a cryptocurrency such as Bitcoin, and the wider applications of blockchain work through smart contracts. Blockchain optimization techniques, and blockchain security strategies are then presented. To complete this foundation, we consider blockchain applications in the financial and non-financial sectors, and also analyze the future of blockchain. A study of blockchain use cases includes supply chains, payment systems, crowdfunding, and DAOs, which rounds out your foundation in blockchain technology.
Table of Contents (14 chapters)

Influence of Moore's law on blockchain technology

Gordon Moore, the co-founder of Fairchild Semiconductor and Intel, observed that the number of components per electrical integrated circuit would grow by at least a factor of two for every year. Back in 1965, he also projected that this rate of growth would continue for at least another decade. Over the years, he revised the forecast to doubling every two years. This observation was geared toward the number of transistors in a dense integrated circuit and has been used in the semiconductor industry to set targets for research and development. But it isn't only limited to the chip-manufacturing field; it has also been used to make observations about technological and social change, as well as productivity and economic growth.

Moore's law has been adapted and applied to approximate the rate of change in network capacity, pixels in images, storage device size, and much more. Blockchain is a technology of the future that might have to overcome multiple limitations in order to achieve healthy long-term development. Moore's law would help in deciding the complexity required for any blockchain application so that the application doesn't have to struggle with future scalability issues.

Since every node in the network maintains the complete blockchain ledger, blockchain data keeps increasing in size as time goes on. This raises some concerns regarding scalability, as each node needs to maintain the blockchain locally (such is the nature of the distributed network). Satoshi Nakamoto had mentioned that the growth of the block header size would be around 4.2 MB per year, and Moore's law would guarantee growth of at least 1.2 GB RAM (in 2008) per year, which should not pose any problems for block storage even if they are maintained in node memory.

Public blockchains, such as Bitcoin, have to deal with the hash rate of the hardware for their consensus algorithms. Bitcoin-mining hardware has been able to keep up with Moore's law, providing the required hash rate in accordance with the growing difficulty rate. However, the future of Bitcoin mining relies on Moore's law and the hardware being able to keep up with the difficulty without causing much loss to the miners:

Figure 1.6: The exponential growth of Bitcoin's difficulty target (source: blockchain.info)