Book Image

Machine Learning Algorithms - Second Edition

Book Image

Machine Learning Algorithms - Second Edition

Overview of this book

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight. This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture. By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.
Table of Contents (19 chapters)

Creating a Machine Learning Architecture

In this chapter, we're going to summarize many of the concepts discussed in the book with the purpose of defining a complete machine learning architecture that is able to preprocess the input data, decompose/augment it, classify/cluster it, and, eventually, show the results, using graphical tools. We're also going to show how scikit-learn manages complex pipelines and how it's possible to fit them and search for the optimal parameters in the global context of a complete architecture.

In particular, we are going to discuss the following:

  • Data collection, preprocessing, and augmentation
  • Normalization, regularization, and dimensionality reduction
  • Vectorized computation and GPU support
  • Distributed architectures
  • Pipelines and feature unions