Book Image

Hands-On Unsupervised Learning with Python

By : Giuseppe Bonaccorso
Book Image

Hands-On Unsupervised Learning with Python

By: Giuseppe Bonaccorso

Overview of this book

Unsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python. This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images. By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges.
Table of Contents (12 chapters)

Generative adversarial networks

These generative models were proposed by Goodfellow and other researchers (in Generative Adversarial Networks, Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., and Bengio Y., arXiv:1406.2661 [stat.ML]) in order to exploit the power of adversarial training, along with the flexibility of deep neural networks. Without the need for too many technical details, we can introduce the concept of adversarial training as a technique based on game theory, whose goal it is to optimize two agents that play against one another. When one agent tries to cheat its opponent, the other agent has to learn how to distinguish between correct and fake input. In particular, a GAN is a model that's split into two well-defined components:

  • A generator
  • A discriminator (also known as a critic)

Let's start by supposing...