Book Image

Python Deep Learning - Second Edition

By : Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Book Image

Python Deep Learning - Second Edition

By: Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca

Overview of this book

With the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you’ll explore deep learning, and learn how to put machine learning to use in your projects. This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You’ll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You’ll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you’ll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota. By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.
Table of Contents (12 chapters)

Deep Learning Fundamentals

In this chapter, we will introduce deep learning(DL) and deep neural networks (DNNs), that is, neural networks with multiple hidden layers. You may wonder what the point of using more than one hidden layer is, given the universal approximation theorem. This is in no way a naive question, and for a long time neural networks were used in that way. Without going into too much detail, one reason is that approximating a complex function might require a huge number of neurons in the hidden layer, making it impractical to use. There is also another, more important, reason for using deep networks, which is not directly related to the number of hidden layers, but to the level of learning. A deep network does not simply learn to predict output Y given input X; it also understands basic features of the input. It's able to learn abstractions of features of...