Book Image

Machine Learning for Healthcare Analytics Projects

Book Image

Machine Learning for Healthcare Analytics Projects

Overview of this book

Machine Learning (ML) has changed the way organizations and individuals use data to improve the efficiency of a system. ML algorithms allow strategists to deal with a variety of structured, unstructured, and semi-structured data. Machine Learning for Healthcare Analytics Projects is packed with new approaches and methodologies for creating powerful solutions for healthcare analytics. This book will teach you how to implement key machine learning algorithms and walk you through their use cases by employing a range of libraries from the Python ecosystem. You will build five end-to-end projects to evaluate the efficiency of Artificial Intelligence (AI) applications for carrying out simple-to-complex healthcare analytics tasks. With each project, you will gain new insights, which will then help you handle healthcare data efficiently. As you make your way through the book, you will use ML to detect cancer in a set of patients using support vector machines (SVMs) and k-Nearest neighbors (KNN) models. In the final chapters, you will create a deep neural network in Keras to predict the onset of diabetes in a huge dataset of patients. You will also learn how to predict heart diseases using neural networks. By the end of this book, you will have learned how to address long-standing challenges, provide specialized solutions for how to deal with them, and carry out a range of cognitive tasks in the healthcare domain.
Table of Contents (7 chapters)

Summary

In this chapter, we were able to predict autism in patients with about 90% accuracy. We also learned how to deal with categorical data; a lot of health applications are going to have categorical data and one way to address this is by using one-hot encoded vectors. Furthermore, we learned how to reduce overfitting using dropout regularization.

In this book, we explored how to implement machine learning to analyze various healthcare issues. In the first chapter, we used machine learning to detect cancer in a set of patients using the SVM and KNN models. In the second chapter, we created a deep neural network in Keras to predict the onset of diabetes on a huge dataset of patients. In the third chapter, we predicted whether or not a short sequence of E.coli bacteria DNA was a promoter or a non-promoter, and we used some common classifiers to classify short E. coli DNA sequences...