Book Image

Mastering Machine Learning with R - Third Edition

By : Cory Lesmeister
Book Image

Mastering Machine Learning with R - Third Edition

By: Cory Lesmeister

Overview of this book

Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work.
Table of Contents (16 chapters)

Advanced Feature Selection in Linear Models

"There is nothing permanent except change."
– Heraclitus

So far, we've examined the usage of linear models for both quantitative and qualitative outcomes with an eye on the techniques of feature selection, that is, the methods and techniques that exclude useless or unwanted predictor variables. We saw that linear models can be quite useful in machine learning problems, how piece-wise linear models can capture non-linear relationships as multivariate adaptive regression splines. Additional techniques have been developed and refined in the last couple of decades that can improve predictive ability and interpretability above and beyond the linear models that we discussed in the preceding chapters. In this day and age, many datasets, such as those in the two prior chapters, have numerous features. It isn't unreasonable...