Book Image

Mastering Machine Learning with R - Third Edition

By : Cory Lesmeister
Book Image

Mastering Machine Learning with R - Third Edition

By: Cory Lesmeister

Overview of this book

Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work.
Table of Contents (16 chapters)

Hierarchical clustering

The hierarchical clustering algorithm is based on a dissimilarity measure between observations. A common measure, and what we will use, is Euclidean distance. Other distance measures are also available.

Hierarchical clustering is an agglomerative or bottom-up technique. By this, we mean that all observations are their own cluster. From there, the algorithm proceeds iteratively by searching all the pairwise points and finding the two clusters that are the most similar. So, after the first iteration, there are n-1 clusters, and after the second iteration, there are n-2 clusters, and so forth.

As the iterations continue, it is important to understand that in addition to the distance measure, we need to specify the linkage between the groups of observations. Different types of data will demand that you use different cluster linkages. As you experiment with...