Book Image

Numerical Computing with Python

By : Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim, Theodore Petrou
Book Image

Numerical Computing with Python

By: Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim, Theodore Petrou

Overview of this book

Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: • Statistics for Machine Learning by Pratap Dangeti • Matplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin Yim • Pandas Cookbook by Theodore Petrou
Table of Contents (21 chapters)
Title Page
Contributors
About Packt
Preface
Index

Chapter 3. K-Nearest Neighbors and Naive Bayes

In the previous chapter, we have learned about computationally intensive methods. In contrast, this chapter discusses the simple methods to balance it out! We will be covering the two techniques, called k-nearest neighbors (KNN)and Naive Bayes here. Before touching on KNN, we explained the issue with the curse of dimensionality with a simulated example. Subsequently, breast cancer medical examples have been utilized to predict whether the cancer is malignant or benign using KNN. In the final section of the chapter, Naive Bayes has been explained with spam/ham classification, which also involves the application of the natural language processing (NLP) techniques consisting of the following basic preprocessing and modeling steps:

  • Punctuation removal
  • Word tokenization and lowercase conversion
  • Stopwords removal
  • Stemming
  • Lemmatization with POS tagging
  • Conversion of words into TF-IDF to create numerical representation of words
  • Application of the Naive Bayes...