Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Developing real-world applications


Recognizing cats and dogs is a cool problem but less likely a problem of importance. Real-world applications of image classification used in products may be different. You may have different data, targets, and so on. In this section, you will learn the tips and tricks to tackle such different settings. The factors that should be considered when approaching a new problem are as follows:

  • The number of targets. Is it a 10 class problem or 10,000 class problem?
  • How vast is the intra-class variance? For example, does the different type of cats have to be identified under one class label?
  • How vast is the inter-class variance? For example, do the different cats have to be identified?
  • How big is the data?
  • How balanced is the data? 
  • Is there already a model that is trained with a lot of images?
  • What is the requisite for deployment inference time and model size? Is it 50 milliseconds on an iPhone or 10 milliseconds on Google Cloud Platform? How much RAM can be consumed...