Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Understanding visual features


Deep learning models are often criticized for not being interpretable. A neural network-based model is often considered to be like a black box because it's difficult for humans to reason out the working of a deep learning model. The transformations of an image over layers by deep learning models are non-linear due to activation functions, so cannot be visualized easily. There are methods that have been developed to tackle the criticism of the non-interpretability by visualizing the layers of the deep network. In this section, we will look at the attempts to visualize the deep layers in an effort to understand how a model works.

Visualization can be done using the activation and gradient of the model. The activation can be visualized using the following techniques:

  • Nearest neighbour: A layer activation of an image can be taken and the nearest images of that activation can be seen together.
  • Dimensionality reduction: The dimension of the activation can be reduced...