Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Localizing algorithms 


Localization algorithms are an extension of the materials learned in Chapter 21, Image Classification and Chapter 22, Image Retrieval. In image classification, an image is passed through several layers of a CNN (convolutional neural network). The final layer of CNN outputs the probabilistic value, belonging to each of the labels. This can be extended to localize the objects. We will see these ideas in the following sections.

Localizing objects using sliding windows

An intuitive way of localization is to predict several cropped portions of an image with an object. The cropping of the images can be done by moving a window across the image and predicting for every window. The method of moving a smaller window than the image and cropping the image according to window size is called a sliding window. A prediction can be made for every cropped window of the image which is called sliding window object detection. 

The prediction can be done by the deep learning model trained...