Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Hebb's rule


Hebb's rule has been proposed as a conjecture in 1949 by the Canadian psychologist Donald Hebb to describe the synaptic plasticity of natural neurons. A few years after its publication, this rule was confirmed by neurophysiological studies, and many research studies have shown its validity in many application, of Artificial Intelligence. Before introducing the rule, it's useful to describe the generic Hebbian neuron, as shown in the following diagram:

Generic Hebbian neuron with a vectorial input

The neuron is a simple computational unit that receives an input vector x, from the pre-synaptic units (other neurons or perceptive systems) and outputs a single scalar value, y. The internal structure of the neuron is represented by a weight vector, w, that models the strength of each synapse. For a single multi-dimensional input, the output is obtained as follows: 

In this model, we are assuming that each input signal is encoded in the corresponding component of the vector, x; therefore...