Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Summary


In this chapter, we have discussed Hebb's rule, showing how it can drive the computation of the first principal component of the input dataset. We have also seen that this rule is unstable because it leads to the infinite growth of the synaptic weights and how it's possible to solve this problem using normalization or Oja's rule. 

We have introduced two different neural networks based on Hebbian learning (Sanger's and Rubner-Tavan's networks), whose internal dynamics are slightly different, which are able to extract the first n principal components in the right order (starting from the largest eigenvalue) without eigendecomposing the input covariance matrix.

Finally, we have introduced the concept of SOM and presented a model called a Kohonen network, which is able to map the input patterns onto a surface where some attractors (one per class) are placed through a competitive learning process. Such a model is able to recognize new patterns (belonging to the same distribution) by eliciting...