Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Chapter 7. Clustering Algorithms

In this chapter, we are going to introduce some fundamental clustering algorithms, discussing both their strengths and weaknesses. The field of unsupervised learning, as well as any other machine learning approach, must be always based on the concept of Occam's razor. Simplicity must always be preferred when performance meets the requirements. However, in this case, the ground truth can be unknown. When a clustering algorithm is adopted as an exploratory tool, we can only assume that the dataset represents a precise data generating process. If this assumption is correct, the best strategy is to determine the number of clusters to maximize the internal cohesion (denseness) and the external separation. This means that we expect to find blobs (or isles) whose samples share some common and partially unique features.

In particular, the algorithms we are going to present are:

  • k-Nearest Neighbors (KNN) based on KD Trees and Ball Trees
  • K-means and K-means++
  • Fuzzy C-means...