Book Image

Apache Spark 2: Data Processing and Real-Time Analytics

By : Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei
Book Image

Apache Spark 2: Data Processing and Real-Time Analytics

By: Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei

Overview of this book

Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle. This Learning Path includes content from the following Packt products: • Mastering Apache Spark 2.x by Romeo Kienzler • Scala and Spark for Big Data Analytics by Md. Rezaul Karim, Sridhar Alla • Apache Spark 2.x Machine Learning Cookbook by Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen MeiCookbook
Table of Contents (23 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Chapter 4. Apache Spark MLlib

MLlib is the original machine learning library that is provided with Apache Spark, the in-memory cluster-based open source data processing system. This library is still based on the RDD API. In this chapter, we will examine the functionality provided with the MLlib library in terms of areas such as regression, classification, and neural network processing. We will examine the theory behind each algorithm before providing working examples that tackle real problems. The example code and documentation on the web can be sparse and confusing.

We will take a step-by-step approach in describing how the following algorithms can be used and what they are capable of doing:

  • Architecture
  • Classification with Naive Bayes
  • Clustering with K-Means
  • Image classification with artificial neural networks