Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

Linear Transformations


In this topic, we will introduce linear transformations. Linear transformations are the backbone of modeling with ANNs. In fact, all the processes of ANN modeling can be thought of as a series of linear transformations. The working components of linear transformations are scalars, vectors, matrices, and tensors. Operations such as additions, transpositions, and multiplications are performed on these components.

Scalars, Vectors, Matrices, and Tensors

Scalars, vectors, matrices, and tensors are the actual components of any deep learning model. While they may be simple in principle, having a fundamental understanding of how to utilize all types, as well as the operations that can be performed on them. It is key to the mathematics of ANNs. Scalars, vectors, and matrices are examples of the general entity known as a tensor, so the term tensors may be used throughout this chapter but may refer to any component. Scalars, vectors, and matrices refer to tensors with a specific...