Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

Introduction to Keras


Building ANNs involves creating layers of nodes. Each node can be thought of as a tensor of weights that are learned in the training process. Once the ANN is fitted to the data, a prediction is made by multiplying the input data by the weight matrices layer by layer, applying any other linear transformation when needed, such as activation functions, until the final output layer is reached. The size of each weight tensor is determined by the size of the shape of input nodes and the shape of the output nodes. For example, in a single-layer ANN, the size of our single hidden layer can be thought of as follows:

Figure 2.41: Solving the dimensions of the hidden layer of a single-layer ANN

If the input matrix of features has n rows, or observations, and m columns, or features, and we want our predicted target to have n rows (one for each observation) and 1 column (the predicted value), we can determine the size of our hidden layer by what is needed to make the matrix multiplication...