Book Image

Python Reinforcement Learning

By : Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo
Book Image

Python Reinforcement Learning

By: Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: • Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran • Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani
Table of Contents (27 chapters)
Title Page
About Packt
Contributors
Preface
Index

The MAB problem


The MAB problem is one of the classical problems in RL. An MAB is actually a slot machine, a gambling game played in a casino where you pull the arm (lever) and get a payout (reward) based on a randomly generated probability distribution. A single slot machine is called a one-armed bandit and, when there are multiple slot machines it is called multi-armed bandits or k-armed bandits.

MABs are shown as follows:

As each slot machine gives us the reward from its own probability distribution, our goal is to find out which slot machine will give us the maximum cumulative reward over a sequence of time. So, at each time step t, the agent performs an action at, that is, pulls an arm from the slot machine and receives a reward rt, and the goal of our agent is to maximize the cumulative reward. 

We define the value of an arm Q(a) as average rewards received by pulling the arm: 

 

So the optimal arm is the one that gives us the maximum cumulative reward, that is: 

The goal of our agent is...