Book Image

Advanced Blockchain Development

By : Imran Bashir, Narayan Prusty
Book Image

Advanced Blockchain Development

By: Imran Bashir, Narayan Prusty

Overview of this book

Blockchain technology is a distributed ledger with applications in industries such as finance, government, and media. This Learning Path is your guide to building blockchain networks using Ethereum, JavaScript, and Solidity. You will get started by understanding the technical foundations of blockchain technology, including distributed systems, cryptography and how this digital ledger keeps data secure. Further into the chapters, you’ll gain insights into developing applications using Ethereum and Hyperledger. As you build on your knowledge of Ether security, mining, smart contracts, and Solidity, you’ll learn how to create robust and secure applications that run exactly as programmed without being affected by fraud, censorship, or third-party interference. Toward the concluding chapters, you’ll explore how blockchain solutions can be implemented in applications such as IoT apps, in addition to its use in currencies. This Learning Path also highlights how you can increase blockchain scalability, and discusses the future scope of this fascinating and powerful technology. By the end of this Learning Path, you'll be equipped with the skills you need to tackle pain points encountered in the blockchain life cycle and confidently design and deploy decentralized applications.
Table of Contents (25 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
15
Blockchain - Outside of Currencies
16
Scalability and Other Challenges
Index

Nonce


The nonce is a 64-bit unsigned integer. The nonce is the solution to the puzzle. A miner keeps incrementing the nonce until it finds the solution. Now you must be wondering if there is a miner who has hash power more than any other miner in the network, would the miner always find nonce first? Well, it wouldn't.

The hash of the block that the miners are mining is different for every miner because the hash depends on things such as the timestamp, miner address, and so on, and it's unlikely that it will be the same for all miners. Therefore, it's not a race to solve the puzzle; rather, it's a lottery system. But of course, a miner is likely to get lucky depending on its hash power, but that doesn't mean the miner will always find the next block.