Book Image

Building Machine Learning Systems with Python

Book Image

Building Machine Learning Systems with Python

Overview of this book

Machine learning, the field of building systems that learn from data, is exploding on the Web and elsewhere. Python is a wonderful language in which to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation and an increasing number of machine learning libraries are developed for Python.Building Machine Learning system with Python shows you exactly how to find patterns through raw data. The book starts by brushing up on your Python ML knowledge and introducing libraries, and then moves on to more serious projects on datasets, Modelling, Recommendations, improving recommendations through examples and sailing through sound and image processing in detail. Using open-source tools and libraries, readers will learn how to apply methods to text, images, and sounds. You will also learn how to evaluate, compare, and choose machine learning techniques. Written for Python programmers, Building Machine Learning Systems with Python teaches you how to use open-source libraries to solve real problems with machine learning. The book is based on real-world examples that the user can build on. Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text's most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.
Table of Contents (20 chapters)
Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Selecting features


If we want to be nice to our machine learning algorithm, we will provide it with features that are not dependent on each other, yet highly dependent on the value to be predicted. It means that each feature adds some salient information. Removing any of the features will lead to a drop in performance.

If we have only a handful of features, we could draw a matrix of scatter plots – one scatter plot for every feature-pair combination. Relationships between the features could then be easily spotted. For every feature pair showing an obvious dependence, we would then think whether we should remove one of them or better design a newer, cleaner feature out of both.

Most of the time, however, we have more than a handful of features to choose from. Just think of the classification task where we had a bag-of-words to classify the quality of an answer, which would require a 1,000 by 1,000 scatter plot. In this case, we need a more automated way to detect the overlapping features and...