Book Image

Building Machine Learning Systems with Python

Book Image

Building Machine Learning Systems with Python

Overview of this book

Machine learning, the field of building systems that learn from data, is exploding on the Web and elsewhere. Python is a wonderful language in which to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation and an increasing number of machine learning libraries are developed for Python.Building Machine Learning system with Python shows you exactly how to find patterns through raw data. The book starts by brushing up on your Python ML knowledge and introducing libraries, and then moves on to more serious projects on datasets, Modelling, Recommendations, improving recommendations through examples and sailing through sound and image processing in detail. Using open-source tools and libraries, readers will learn how to apply methods to text, images, and sounds. You will also learn how to evaluate, compare, and choose machine learning techniques. Written for Python programmers, Building Machine Learning Systems with Python teaches you how to use open-source libraries to solve real problems with machine learning. The book is based on real-world examples that the user can build on. Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text's most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.
Table of Contents (20 chapters)
Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Binary and multiclass classification


The first classifier we saw, the threshold classifier, was a simple binary classifier (the result is either one class or the other as a point is either above the threshold or it is not). The second classifier we used, the nearest neighbor classifier, was a naturally multiclass classifier (the output can be one of several classes).

It is often simpler to define a simple binary method than one that works on multiclass problems. However, we can reduce the multiclass problem to a series of binary decisions. This is what we did earlier in the Iris dataset in a haphazard way; we observed that it was easy to separate one of the initial classes and focused on the other two, reducing the problem to two binary decisions:

  • Is it an Iris Setosa (yes or no)?

  • If no, check whether it is an Iris Virginica (yes or no).

Of course, we want to leave this sort of reasoning to the computer. As usual, there are several solutions to this multiclass reduction.

The simplest is to use...