Book Image

Building Machine Learning Systems with Python

Book Image

Building Machine Learning Systems with Python

Overview of this book

Machine learning, the field of building systems that learn from data, is exploding on the Web and elsewhere. Python is a wonderful language in which to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation and an increasing number of machine learning libraries are developed for Python.Building Machine Learning system with Python shows you exactly how to find patterns through raw data. The book starts by brushing up on your Python ML knowledge and introducing libraries, and then moves on to more serious projects on datasets, Modelling, Recommendations, improving recommendations through examples and sailing through sound and image processing in detail. Using open-source tools and libraries, readers will learn how to apply methods to text, images, and sounds. You will also learn how to evaluate, compare, and choose machine learning techniques. Written for Python programmers, Building Machine Learning Systems with Python teaches you how to use open-source libraries to solve real problems with machine learning. The book is based on real-world examples that the user can build on. Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text's most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.
Table of Contents (20 chapters)
Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Tweaking the parameters


So what about all the other parameters? Can we tweak them all to get better results?

Sure. We could, of course, tweak the number of clusters or play with the vectorizer's max_features parameter (you should try that!). Also, we could play with different cluster center initializations. There are also more exciting alternatives to KMeans itself. There are, for example, clustering approaches that also let you use different similarity measurements such as Cosine similarity, Pearson, or Jaccard. An exciting field for you to play.

But before you go there, you will have to define what you actually mean by "better". Scikit has a complete package dedicated only to this definition. The package is called sklearn.metrics and also contains a full range of different metrics to measure clustering quality. Maybe that should be the first place to go now, right into the sources of the metrics package.