Book Image

Building Machine Learning Systems with Python

Book Image

Building Machine Learning Systems with Python

Overview of this book

Machine learning, the field of building systems that learn from data, is exploding on the Web and elsewhere. Python is a wonderful language in which to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation and an increasing number of machine learning libraries are developed for Python.Building Machine Learning system with Python shows you exactly how to find patterns through raw data. The book starts by brushing up on your Python ML knowledge and introducing libraries, and then moves on to more serious projects on datasets, Modelling, Recommendations, improving recommendations through examples and sailing through sound and image processing in detail. Using open-source tools and libraries, readers will learn how to apply methods to text, images, and sounds. You will also learn how to evaluate, compare, and choose machine learning techniques. Written for Python programmers, Building Machine Learning Systems with Python teaches you how to use open-source libraries to solve real problems with machine learning. The book is based on real-world examples that the user can build on. Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text's most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.
Table of Contents (20 chapters)
Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Summary


In this chapter, we stepped out of our comfort zone when we built a music genre classifier. Not having a deep understanding of music theory, at first we failed to train a classifier that predicts the music genre of songs with reasonable accuracy using FFT. But then we created a classifier that showed really usable performance using MFC features.

In both cases, we used features that we understood only so much as to know how and where to put them into our classifier setup. The one failed, the other succeeded. The difference between them is that in the second case, we relied on features that were created by experts in the field.

And that is totally OK. If we are mainly interested in the result, we sometimes simply have to take shortcuts—we only have to make sure to take these shortcuts from experts in the specific domains. And because we had learned how to correctly measure the performance in this new multiclass classification problem, we took these shortcuts with confidence.

In the next...